Machine-learning and R in plastic surgery – – Classification and attractiveness of facial emotions

satRday Belgrade

Lubomír Štěpánek^{1, 2}

Pavel Kasal²

Jan Měšťák³

¹Institute of Biophysics and Informatics ³Department of Plastic Surgery First Faculty of Medicine Charles University in Prague

²Department of Biomedical Informatics Faculty of Biomedical Engineering Czech Technical University in Prague

Introduction	Methodology	Results	Future plans	Summary
000	00000	000	0	O
Content				

2 Methodology

3 Results

Introduction	Methodology	Results	Future plans	Summary
●00	00000	000	○	0
Quick introdu	uction			

- human facial attractiveness perception is data-based and irrespective of the perceiver
- current plastic surgery deals with aesthetic indications such as an improvement of the attractiveness of a smile or other facial emotions

Introduction	Methodology	Results	Future plans	Summary
○●○	00000	000	O	0
Quick introdu	uction			

- total face impression is also dependent on presently expressed facial emotion
- there is no face without facial emotion at all

Introduction	Methodology	Results	Future plans	Summary
	00000	000	O	○
Aims of the s	tudy			

- to identify geometric features of a face associated with an increase of facial attractiveness after undergoing rhinoplasty
- to explore how accurate classification of faces into sets of facial emotions and their facial manifestations is

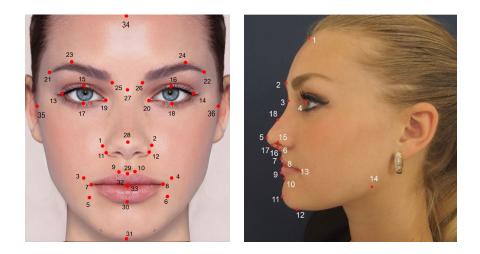
Introduction	Methodology	Results	Future plans	Summary
000	●0000	000	0	0
Brief metho	dology of faci	ial attractive	ness evaluation	n

- profile facial image data were collected for each patient before and after rhinoplasty (about 80 images)
- images were
 - processed
 - landmarked

ь.

- analyzed
- linear regression was performed to select predictors increasing facial attractiveness after undergoing rhinoplasty

- portrait facial image data were collected for each person just in the moment they show a facial expression according to the given incentive (about 170 images)
- images were
 - processed
 - landmarked
 - analyzed
- Bayesian naive classifiers (e1071), decision trees (CART) (rpart) and neural networks (neuralnet) were learned to allow assigning a new face image data into one of facial emotions


Introduction	Methodology	Results	Future plans	Summary
000	००●००	000	O	O
Data of inter	est			

- facial attractiveness of patients' data was measured using Likert scale by a board of independent observers
- the sets of used facial emotions and other facial manifestation originate from Ekman-Friesen FACS scale, but was improved substantially

cluster of emotions	quality
contact	positive
helpfulness	positive
evocation	positive
defence	negative
aggression	negative
reaction	neutral
decision	neutral
well-being	positive
fun	positive
rejection	negative
depression	negative
fear	negative
deliberation	positive
expectation	positive

Lubomír Štěpánek 🛛 🚳 🎇

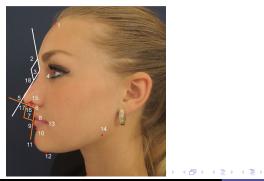
Introduction	Methodology	Results	Future plans	Summary
000	०००●०	000	O	O
Landmarking				

・ロト ・個ト ・ヨト ・ヨト

990

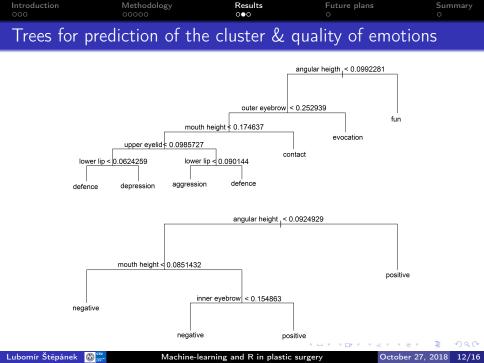
Some derived metrics and angles	Introduction 000	Methodology 0000●	Results 000	Future plans 0	Summary O
	Some derived	metrics and a	ngles		

metrics/angles	definition
nasofrontal angle	angle between landmarks 2, 3, 18 (profile)
nasolabial angle	angle between landmarks 7, 6, 17 (profile)
nasal tip	horizontal Euclidean distance between landmarks 6, 5 (profile)
nostril prominence	Euclidean distance between landmarks 15, 16 (profile)
cornea-nasion distance	horizontal Euclidean distance between landmarks 3, 4 (profile)
outer eyebrow	Euclidean distance between landmarks 21, 22 (portrait)
inner eyebrow	Euclidean distance between landmarks 25, 26 (portrait)
lower lip	Euclidean distance between landmarks 30, 33 (portrait)
mouth height	Euclidean distance between landmarks 6, 8 (profile)
angular height	Euclidean distance between landmarks 7 (or 8) and 33 (portrait)



Machine-learning and R in plastic surgery

900

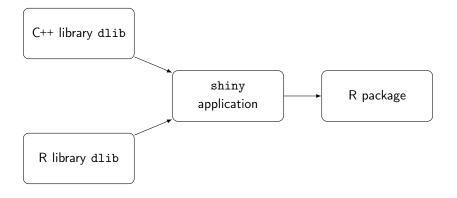

Introduction	Methodology	Results	Future plans	Summary
000	00000	●00	0	O
Evaluation of	rhinoplasty effe	ect on facial	attractiveness	

predictor	estimate	t-value	p-value
intercept _{after-before}	3.832	1.696	0.043
nasofrontal angle _{after-before}	0.353	1.969	0.049
nasolabial angle _{after-before}	0.439	1.986	0.047
nasal tip _{after-before}	-3.178	0.234	0.068
nostril prominence _{after-before}	-0.145	0.128	0.266
cornea-nasion distance _{after-before}	-0.014	0.035	0.694

900

Introduction 000	Methodology 00000	Results 00●	Future plans 0	Summary O
Predictions of	f the emotional	quality bas	ed on the naive	9
Baves classifie	ers, CART's an	d neural net	tworks. respect	ivelv

		predicted class		
		negative	neutral	positive
	negative	34	11	16
true class	neutral	16	39	8
	positive	4	10	30


	predicted class			
		negative	neutral	positive
true class	negative	35	7	15
	neutral	12	40	9
	positive	4	12	31

	predicted class			
		negative	neutral	positive
true class	negative	36	6	6
	neutral	12	54	18
	positive	3	4	32

イロト イロト イヨト イヨト

Introduction	Methodology	Results	Future plans	Summary
000	00000	000	●	O
Going further				

• automated facial landmarking using C++ library dlib

Introduction	Methodology	Results	Future plans	Summary
000	00000	000	O	●
Conclusion				

- enlargements of both a nasolabial and nasofrontal angle within rhinoplasty were determined as statistically significant predictors increasing facial attractiveness
- neural networks manifested the highest predictive accuracy of a new face categorization into facial emotions
- geometrical shape of mouth, then eyebrows and finally eyes affect in descending order the classification of facial images into emotions and emotional qualities

Thank you for your attention!

lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz

Machine-learning and R in plastic surgery